Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Foods ; 13(5)2024 Feb 24.
Article En | MEDLINE | ID: mdl-38472802

White grape pomace (winery by-product) stabilized by blanching and high hydrostatic pressure has recently been successful at delaying lipid oxidation in burgers. The aim of this study was to investigate whether it can also delay lipid oxidation in dry-cured sausages, and to compare its effect when added at 0.5 and 3% with those of synthetic additives (sodium nitrite and ascorbic acid) and no additives (Control) in lipid and protein oxidation, the instrumental color, the sensory characteristics, and the volatile compounds. The pomace (68.7 ± 7.4 mmol Trolox g-1) was as effective as the additives at preventing lipid oxidation, resulting in values 3.2-3.8 times lower than the Control sausages. However, the pomace was not effective at decreasing the microbial counts, improving the instrumental and sensory color and the volatile compound profile, and decreasing the off-odor and off-flavor developed in the Control sausages. The lack of a detrimental effect of the pomace at 0.5% on the volatile compounds and the sensory characteristics and its benefits to delay lipid oxidation suggest that it might be useful to improve the oxidative stability. Conversely, at 3%, with a detrimental effect on some sensory characteristics and no benefits over the lower dosage, is not advisable.

2.
Food Res Int ; 132: 109070, 2020 06.
Article En | MEDLINE | ID: mdl-32331663

The present study aimed to evaluate the nutritional and bioactive potential of four edible flowers (borage, centaurea, camellia, and pansies). Significant differences were observed among the four. Water was the main constituent (>76%, fresh weight - fw). Linoleic and palmitic acids were the major fatty acids found in borage and red and yellow pansies, while in camellia it was the arachidic acid. In white pansies, behenic and arachidic acids were predominant. Concerning vitamin E, α-tocopherol was the major vitamer. Carotenoids values varied between 5.8 and 181.4 mg ß-carotene/100 g dry weight (dw) in centaurea and borage, respectively, being particularly rich in lutein. Malic acid was the major organic acid, except in centaurea, where succinic acid was predominant. Fructose, glucose and sucrose were detected in all flowers. These results can contribute to the knowledge of these edible flowers and consequently increase their popularity among consumers and in the food industry.


Borago/chemistry , Camellia/chemistry , Carotenoids/analysis , Centaurea/chemistry , Fatty Acids/analysis , Organic Chemicals/analysis , Sugars/analysis , Viola/chemistry , Vitamin E/analysis , Flowers/chemistry , Lutein/analysis , Nutritive Value , alpha-Tocopherol/analysis
3.
J Sci Food Agric ; 93(11): 2707-14, 2013 Aug 30.
Article En | MEDLINE | ID: mdl-23553824

BACKGROUND: There is a growing interest in industry to replace synthetic chemicals by natural products with bioactive properties. Aromatic plants are excellent sources of bioactive compounds that can be extracted using several processes. As far as oregano is concerned, studies are lacking addressing the effect of extraction processes in bioactivity of extracts. This study aimed to characterise the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil and extracts (in hot and cold water, and ethanol), and the chemical composition of its essential oil. RESULTS: The major components of oregano essential oil were carvacrol, ß-fenchyl alcohol, thymol, and γ-terpinene. Hot water extract had the strongest antioxidant properties and the highest phenolic content. All extracts were ineffective in inhibiting the growth of the seven tested bacteria. In contrast, the essential oil inhibited the growth of all bacteria, causing greater reductions on both Listeria strains (L. monocytogenes and L. innocua). CONCLUSION: O. vulgare extracts and essential oil from Portuguese origin are strong candidates to replace synthetic chemicals used by the industry.


Oils, Volatile/chemistry , Origanum/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Antioxidants/chemistry
4.
J Agric Food Chem ; 61(11): 2851-60, 2013 Mar 20.
Article En | MEDLINE | ID: mdl-23425724

High-pressure processing (HPP) is a technology of growing interest for food preservation, due to its ability to control the activity of degradative enzymes. The effect of three variables (pressure levels of 100, 250, and 400 MPa; pressure holding times of 0, 5, 15, and 30 min; and pressurization rates of 8 and 14 MPa/s) on the activity of the enzymes acid phosphatase, cathepsins (B and D), lipase, and calpains was studied using sea bass fillets as a case study model. Additionally, the effect of HPP on sarcoplasmic proteins was studied by SDS-PAGE and isoelectric focusing electrophoreses. The increase in pressure level and holding time decreased the protein concentration in sarcoplasmic extracts, and also the activity of calpains. As compared to nontreated samples, acid phosphatase activity was lower at 400 MPa, and for cathepsin D lower activities were observed at 100 and 400 MPa. The increase in pressurization rate increased the activity of cathepsin D, lipase, and calpains, although it was not always significant. In contrast, cathepsin B and lipase activities were less affected by HPP treatments. Electrophoresis separation of sarcoplasmic proteins showed that the intensity of many protein bands changed mainly due to pressure level and holding time. The results of this study suggest that HPP causes lysosomes disruption and also denaturation, aggregation, and fragmentation of sarcoplasmic proteins, and this evidence might be related to the decrease in enzymes activity especially at 400 MPa. In conclusion, HPP can be a potential tool to control the activity of degradative enzymes, which might prevent the softening of sea bass muscle due to autolytic reactions.


Fish Products/analysis , Fish Proteins/analysis , Food Handling , Muscles/enzymology , Animals , Bass , Calpain/analysis , Cathepsins/analysis , Lipase/analysis , Muscles/chemistry , Pressure
5.
J Agric Food Chem ; 52(18): 5724-9, 2004 Sep 08.
Article En | MEDLINE | ID: mdl-15373415

Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 degrees C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 degrees C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55-57 degrees C) and a biphasic model for higher temperatures (58-70 degrees C). The enzyme showed a stable behavior toward high-pressure/temperature treatments.


Capsicum/enzymology , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/isolation & purification , Chromatography, Affinity , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Pectins/pharmacology , Sodium Chloride/pharmacology , Temperature
...